Chương 6: Tỉ lệ thức và đại lượng tỉ lệ
Chương 7: Biểu thức đại số và đa thức một biến
Chương 8: Làm quen với biến cố và xác suất của biến cố
Chương 9: Quan hệ giữa các yếu tố trong một tam giác
Chương 10: Một số hình khối trong thực tiễn

Giải Toán 7 tập 2 trang 46: Bài tập cuối chương 7

Giải Toán 7 tập 2 trang 46: Bài tập cuối chương 7

Giải toán 7 tập 2 trang 46 sách Kết nối tri thức có đáp án chi tiết cho từng bài tập trong sách giáo khoa Toán lớp 7 Kết nối tri thức mới. Mời các em học sinh cùng quý phụ huynh tham khảo.

Giải Toán 7 tập 2 trang 46

Bài 7.42 trang 46 Toán 7 tập 2

Một hãng taxi quy định giá cước như sau: 0,5 km đầu tiên giá 8 000 đồng; tiếp theo cứ mỗi kilomet giá 11 000 đồng. Giả sử một người thuê xe đi x (km)

a) Chứng tỏ rằng biểu thức biểu thị số tiền mà người đó phải trả là một đa thức. Tìm bậc, hệ số cao nhất và hệ số tự do của đa thức đó.

b) Giá trị của đa thức tại x = 9 nói lên điều gì?

Hướng dẫn giải:

a) 0,5 km, người đó phải trả: 8 000 (đồng)

Quãng đường còn lại người đó phải đi là: x – 0,5 (km)

Trong x – 0,5 km đó, người đó phải trả: (x – 0,5). 11 000 ( đồng)

Đa thức biểu thị số tiền mà người đó phải trả là:

T(x) = 8 000 + (x – 0,5). 11 000

= 8 000 + x . 11 000 – 0,5 . 11 000

= 8 000 + 11 000 . x – 5 500

= 11 000 .x + 2 500

Bậc của đa thức là: 1

Hệ số cao nhất: 11 000

Hệ số tự do: 2 500

b) Thay x = 9 vào đa thức T(x), ta được:

T(9) = 11 000 . 9 + 2 500 = 101 500

Giá trị này nói lên số tiền mà người đó phải trả khi đi 9 km là 101 500 đồng

Bài 7.43 trang 46 Toán 7 tập 2

Cho đa thức bậc hai F(x) = ax 2 + bx + c, trong đó, a, b và c là những số với a ≠ 0

a) Cho biết a + b + c = 0. Giải thích tại sao x = 1 là một nghiệm của F(x)

b) Áp dụng, hãy tìm một nghiệm của đa thức bậc hai 2x2 – 5x + 3

Hướng dẫn giải:

a) Thay x = 1 vào đa thức F(x), ta có:

F(1) = a.12 + b.1 + c = a+ b + c

Mà a + b + c = 0

Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)

b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0

Do đó, đa thức có 1 nghiệm là x = 1

Bài 7.44 trang 46 Toán 7 tập 2

Cho đa thức A = x4 + x3 – 2x – 2

a) Tìm đa thức B sao cho A + B = x3 + 3x + 1

b) Tìm đa thức C sao cho A – C = x5

c) Tìm đa thức D biết rằng D = (2x3 – 3) . A

d) Tìm đa thức P sao cho A = (x+1) . P

e) Có hay không một đa thức Q sao cho A = (x2 + 1) . Q?

Hướng dẫn giải:

a) Ta có:

B = (A + B) – A

= (x3 + 3x + 1) – (x4 + x3 – 2x – 2)

= x3 + 3x + 1 – x4 – x3 + 2x + 2

= – x4 + (x3 – x3) + (3x + 2x) + (1 + 2)

= – x4 + 5x + 3

b) C = (A – C) – A

= x5 – (x4 + x3 – 2x – 2)

= x5 – x4 – x3 + 2x + 2)

c) D = (2x3 – 3) . A

= (2x3 – 3) . (x4 + x3 – 2x – 2)

= 2x3 . (x4 + x3 – 2x – 2) + (-3) .(x4 + x3 – 2x – 2)

= 2x3 . x4 + 2x3 . x3 + 2x3 . (-2x) + 2x3 . (-2) + (-3). x4 + (-3) . x3 + (-3). (-2x) + (-3). (-2)

= 2x7 + 2x6 – 4x4 – 4x3 – 3x4 – 3x3 + 6x + 6

= 2x7 + 2x6 + (-4x4 – 3x4) + (-4x3 – 3x3) + 6x + 6

= 2x7 + 2x6 – 7x4 – 7x3 + 6x + 6

d) P = A : (x+1) = (x4 + x3 – 2x – 2) : (x + 1)

Giải Toán 7 tập 2 trang 46

Vậy P = x3 – 2

e) Q = A : (x2 + 1)

Nếu A chia cho đa thức x2 + 1 không dư thì có một đa thức Q thỏa mãn

Ta thực hiện phép chia (x4 + x3 – 2x – 2) : (x2 + 1)

Giải Toán 7 tập 2 trang 46

Do phép chia có dư nên không tồn tại đa thức Q thỏa mãn.

Bài 7.45 trang 46 Toán 7 tập 2

Cho đa thức P(x). Giải thích tại sao nếu có đa thức Q(x) sao cho P(x) = (x – 3) . Q(x) (tức là P(x) chia hết cho x – 3) thì x = 3 là một nghiệm của P(x)

Hướng dẫn giải:

Vì tại x = 3 thì P(x) = (3 – 3) . Q(x) = 0. Q(x) = 0 nên x = 3 là một nghiệm của đa thức P(x)

Bài 7.46 trang 46 Toán 7 tập 2

Hai bạn Tròn và Vuông tranh luận với nhau như sau:

Giải Toán 7 tập 2 trang 46

Hãy cho biết ý kiến của em và nêu một ví dụ minh họa.

Hướng dẫn giải:

Tròn đúng, Vuông sai vì tổng của các đa thức là một đa thức có bậc không lớn hơn bậc của các đa thức thành phần

Đa thức M(x) = x3 + 1 có thể viết được thành tổng của hai đa thức bậc 4 có hệ số cao nhất là 2 số đối nhau.

Ví dụ:

x3 + 1 = (x4 + 1) + (-x4 + x3)

 

Bài học